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Experimental data on the damping properties of a simply supported aluminium
plate mounted in a rigid baffle, and separated by an air gap from a slab of
open-celled plastic foam, are presented along with numerical results from two
independent analyses. The first is a coupled modal analysis incorporating a
finite-thickness layer of absorbent and a baffle of finite dimensions. The second
is a plate radiation model with an infinite baffle and an absorbent of semi-infinite
extent. Numerical predictions from the two models and the experimental data are
generally in reasonable agreement, and the roles of both the plate/absorbent
spacing and the mode of vibration of the plate are highlighted. It is shown, for
example, that the loss factor of the plate is very strongly dependent on the air
space and that the damping varies quite markedly between different plate modes.
The damping is also strongly dependent on the steady flow resistivity of the porous
medium. Predictions of the power dissipation per unit volume in the absorbent
(with no air gap) and of the intensity distribution over the plate surface (with an
air gap) illustrate some interesting features of the behaviour of the system.
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1. INTRODUCTION

The transverse vibration of a thin metal plate, mounted with low-loss boundary
conditions, is normally lightly damped if the plate radiates into a gas. Acoustic
radiation, internal losses and dissipation at the boundaries are the prevailing
damping mechanisms, but the combined effect of these is nonetheless fairly small.
If, however, a layer of porous, acoustically dissipative material is placed near the

† A shorter version of this paper was presented at the ISMA21 Conference in Leuven, Belgium,
18–20 September 1996.
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surface of the plate then a resistive near-field is created, and ‘‘gas-pumping’’ effects
within the absorbent bring about very substantial energy losses by viscous and
thermal mechanisms. The increase in structural loss factor can be very high and
depends on the spacing between the plate and the surface of the absorbent, and
on the bulk acoustic properties of the absorbent. This plate damping problem
contains some of the essential features of the damping mechanisms prevailing in
sound transmission through aircraft fuselages—in which a porous thermal
insulation blanket is situated within the double-panel structure between the outer
skin and the interior trim panel—and also in lightweight double-wall building
partitions. A related problem has been investigated by Astley et al. [1], who found
that an internal lining of porous material, placed adjacent to a flexible duct wall,
brought about very large axial attenuation of ductborne sound around the lowest
transverse wall resonance frequency. The physical mechanism is similar to that in
the plate vibration problem considered here, although attention was not focused,
in reference [1], on the wall damping, but rather on sound attenuation in the duct.
A fairly obvious question arises in this context, concerning whether the porous
medium should be considered flexible, or whether an equivalent fluid
representation would be adequate in theoretical modelling. In reference [1], good
agreement between prediction and measurement was obtained by the use of an
equivalent fluid formulation but it should be noted that, in the experimental tests
carried out in that investigation, there was little or no contact between the solid
frame of the absorbent and the duct wall. Bolton et al. [2] have fairly recently
reported a study of sound transmission through multiple panels containing elastic
porous blankets, and one of their concluding remarks is of particular interest here:
‘‘If the foam layer is separated from the panel by an airspace, relatively
well-damped airborne waves are better excited in the lining than the lightly
damped frame and shear waves.’’ This suggests that, provided there is no solid
contact between the vibrating plate and the absorbent layer, an equivalent fluid
representation of the absorbent (in which frame flexibility is not taken into
account) might be adequate. Panneton and Atalla [3] came to a similar conclusion
in a numerical study of sound transmission through double-wall structures with
poroelastic blankets between the panels but also added, ‘‘. . . the mixed
configuration, bonded–unbonded, is preferred to the bonded or unbonded
configuration.’’ Evidently—as might be expected—a poroelastic medium, bonded
to a panel, exerts a greater damping effect than it would if it were not bonded
(because of enhanced structural coupling between the panel and the solid frame
of the material, and vibrational damping losses in the frame), thereby increasing
the transmission loss of the double-wall structure. Equally, the solid frame of the
absorbent, if bonded to both panels, can act as a vibration bridge between the
panels, thus lowering the transmission loss. Allard [4] has presented analyses of
structures involving plates and porous layers, though he did not address himself
explicitly to the question of the effects of the porous material on the plate damping.

In this paper, we report the results from a study of the effects of a layer of porous
material placed a distance away from a simply supported plate which is mounted
in a baffle and vibrating in one of its normal modes. Experimental results for the
plate loss factor are given and two independent theoretical analyses are described
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and used to provide numerical data for comparison. Because of the nature of the
experimental apparatus, neither theoretical model alone could be expected to yield
accurate predictions for all the modes considered. On the other hand, both models
taken together do provide a complete coverage and comparisons between all three
sets of data give a valuable insight into the mechanisms responsible for radiation
damping. The parametric dependence of loss factor on separation distance and
flow resistivity of the absorbent—for a commonly used material—is also
presented, and this illustrates the range of structural damping that is achievable.
The computed distribution of energy dissipation per unit volume in the absorbent
and intensity distribution over the plate surface are shown for typical cases, and
help to illustrate the physical mechanisms of damping.

2. MEASUREMENTS

An experimental investigation of sound radiation into a porous medium was
conducted by using the baffled aluminium plate and slab of plastic foam shown
in the upper part of Figure 1. An electrodynamic shaker, connected to the plate
via a force transducer, was used to excite the system and mobility spectra were
obtained from the frequency response function between the applied force signal
and the velocity measured at a number of points on the plate. A modal curve fitting
procedure was employed to determine the damping of the plate from the modal
peaks in the mobility spectra. From these data it was possible to infer the
contribution to the total damping resulting from radiation from the plate into the
porous layer.

2.1.     

A 1-mm thick aluminium plate measuring 458×250 mm was used in the
experiments. These dimensions were selected to provide a fundamental frequency
of about 50 Hz (close to the first mode in a typical aircraft fuselage bay) and as
wide a modal separation as possible, to facilitate the experimental identification
of structural modes. The baffle was constructed from a 43-mm thick sheet of
plywood to provide a substantial structural discontinuity and hence weak coupling
between itself and the plate. An approximation to a simply supported boundary
condition was obtained by using the technique illustrated in the lower part of
Figure 1. Sharp pins were glued into grooves cut at 15 mm centres in a 1·5-mm
thick aluminium strip and this was then fixed around the perimeter of the aperture
in the baffle. The pins were then forced up against the edges of the plate firmly
enough to secure it in place but not so firmly as to cause buckling. This left a
1·5-mm wide gap around the plate perimeter, which was sealed with a strip of thin
aluminium tape to prevent acoustic leakage between the air on opposite sides of
the baffle. An M6 nut was glued to the plate and used to secure the force
transducer, which was then connected to the shaker via a slender rod (or ‘‘moment
arrester’’); this arrangement is shown in Figure 2. White noise was fed to the
shaker to excite the system.

A 1·45×1·24×0·345 m slab of partially reticulated combustion modified
polyether foam was used as the porous medium. This material had a bulk density
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of 39 kg/m3 and a steady flow resistivity, s, of 6992 mks rayl/m. Foam was used
in preference to (say) glass fibre blanket because its relatively isotropic properties
simplified the theoretical analysis. Although any anisotropy in the bulk properties
of the foam used in the present experiments was not examined in detail, experience
has shown that most polyether and polyester foams may be treated as effectively
isotropic for most practical purposes. A further advantage of using foam was its
relative ease in handling and positioning. The bulk acoustic properties of the foam
(which is treated here as an equivalent fluid) were measured by using an impedance
tube technique, over the frequency range 63 Hz–2 kHz. The acoustic characteristic

Figure 1. System for mounting the plate in a baffle; (x, y) dimensions: plate—a, b; baffle—La , Lb .



Plate
Head of  shaker

Pre-tensioning nuts
for force transducer Moment

arrester

Lock
nut

Nut
glued to
plate

Barrel connecting
moment arrester to
force transducer

Force
transducer

(Mass of  assembly = 45.7 g, including head
of  shaker)

      147

Figure 2. The method of fixing the shaker to the plate.

impedance Za and propagation coefficient Ga at frequency f were represented in
the following form, r being the air density, c the sound speed and k the acoustic
wavenumber:

Za /rc=1+ c1j
c2 − ic3j

c4 and Ga /k= c5j
c6 + i(1+ c7j

c8). (1a, b)

Here j is the dimensionless frequency given by

j= rf/s. (2)

The coefficients c1 − c8 were found from regression lines through the measured
data, which yielded c1 =0·1590, c2 =−0·5517, c3 =0·0632, c4 =−0·8730,
c5 =0·1442, c6 =−0·7323, c7 =0·2779, c8 =−0·3699. This follows the approach
used by Delany and Bazley [5], although their curve-fitting formulae give incorrect
results if they are used to extrapolate the measured data below the lower end of
their frequency range (j1 0·012, corresponding to f=70 Hz for the foam used
here). In order to avoid this problem, the low frequency model of Kirby and
Cummings [6] was employed for predictive purposes in the two theoretical
formulations described in this paper. This involves the use of the Delany and
Bazley formulae with coefficients as given above, together with a parallel-fibre
model of the absorbent and an empirically-determined, real, frequency-dependent
tortuosity and shape factor. Low frequency approximations to Bessel and
Neumann functions are used, but these are valid from zero frequency to
frequencies well above the range of interest here. The low frequency model is a
way of extrapolating measured data (i.e., the real and imaginary parts of both Za

and Ga ) to arbitrarily low frequencies while retaining physically reasonable values
of tortuosity and pore shape factor, and at the same time predicting the correct
limiting values of the bulk acoustic parameters as j:0.
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2.2.     

Mobility measurements were initially performed with the plate radiating into air
on both sides. As a means of providing a check on the vibrational mode shapes
of the plate, measurements of the approximate mode shapes were performed in
the absence of the porous layer at a series of points arranged in a grid over the
plate surface. The frequency response function between the velocity at these points
(measured by the use of a roving accelerometer) and the force measured at the
driving point was taken, and the mode shapes were determined from the
magnitude and phase of this function at frequencies where the mobility plots
exhibited peaks (see section 5 of this paper). The foam slab was then introduced
and measurements were performed with air gaps of 1·6, 4·5, 7·3, 10·2, 13, 15·9,
18·7, 38, 57 and 114 mm. For each air gap the frequency response function
between the acceleration measured at a range of locations on the plate surface and
the excitation force was recorded. This was then converted into mobility by
dividing the data by iv (v=radian frequency).

A robust experimental modal analysis (see the paper by Xu [7]) of the measured
mobility spectra was performed, yielding the total loss factor of the plate modes,
comprising the boundary losses, internal losses and losses from sound radiation
into the surrounding fluid. For the case where the fluid is air, the radiation losses
are usually insignificant and the total loss factor is dominated by the losses at the
plate boundary. When, however, a porous material is introduced on one side of
the plate, there will be an increase in the radiated sound power and a
corresponding rise in the total loss factor. This new radiation loss can be extracted
by subtracting the total loss factor, for the plate radiating into air, from the total
loss factor for the plate radiating into the porous material, and adding to this the
theoretical loss factor for the plate radiating into air from both sides.

3. A MODAL FORMULATION

The experimental baffled plate system may be modelled as three finite domains,
as shown in section in Figure 3. The radiation loss on the upper surface of the
absorbent may be modelled by assuming the existence of an infinitely long duct
with finite rectangular cross-section (La ×Lb ). The ‘‘duct walls’’ are assumed to
impose a pressure release boundary condition, and this same boundary condition
is assumed also to prevail at the perimeters of the absorbent layer and the air space.
This choice of boundary condition is convenient in the present case in that it
renders the analysis relatively straightforward as compared to cases involving
other possible boundary conditions. The radiation effects (assumed to be slight)
on the underside of the plate will not be modelled directly in this analysis but will
be taken in account by the imposition of experimentally observed structural
damping and stiffness parameters on the overall system in the tuning and
verification process described below. The dynamics of the overall system may now
be formulated by coupling of the individual subsystem equations.
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3.1.   ()

The transverse response of the plate w(x y; v) may be expressed in terms of its
uncoupled mode shapes as

w= s
ns

i=1

fis (x, y)qis (v), (3)

where w is the complex amplitude of upward displacement of the plate at a
particular frequency v, qis is the response of the ith structural mode fis and ns is
the number of modes used in the expansion. Equation (3) can be expressed in
vector form as

w=Fsqs , (4)

where Fs is a row vector of the structural mode shapes and qs is a column vector
of the modal responses. For the simply supported case and for the dimensions
shown, the plate equation will be satisfied by mass normalized mode shapes given
as

fsi =(2/zMp ) sin [(x+ a/2−La /2)mipx/a] sin [(y+ b/2−Lb /2)nipy/b], (5)

Figure 3. The plate, air space and absorbent system.



.   .150

where Mp is the mass of the plate, a, b are its transverse dimensions and mi , ni are
the x, y mode numbers associated with the ith mode. The natural frequencies of
the modes will be given by

v2
si =[p4Et2/12rp (1− n2)](m2

i /a2 + n2
i /b2)2, (6)

where E, n, t, rp are the Young’s modulus, Poisson’s ratio, thickness and material
density of the plate, respectively, although in this analysis the experimentally
observed values of plate frequencies are substituted for theoretical values in the
verification of the modal formulation. If the plate is loaded by a point force f at
a position (xl , yl ) and is loaded on the fluid side by a pressure distribution
pf (x, y; v), then the response of the ith structural mode is given by

(−v2 + i2zsivsiv+v2
si )qsi =−g

(La + a)/2

(La − a)/2 g
(Lb + b)/2

(Lb − b)/2

pffsi dy dx+ ffsi (xl , yl ), (7)

zsi being the damping ratio of the ith plate mode.

3.2.   

Upon assuming that the acoustic pressure within the air gap does not vary
significantly with height, one can also expand the pressure in terms of nf of its
uncoupled mode shapes as

pf (x, y; v)=Ff (x, y)qf (v), (8)

where the normalized mode shapes are given by

ffi =(2c/zLaLbH) sin (mipx/La ) sin (nipy/Lb ), (9)

H being the width of the air space between the plate and the absorbent. Imposing
the Helmholtz equation then yields the associated natural frequencies, which are
given by

v2
fi = p2c2(m2

i /L2
a + n2

i /L2
b ). (10)

The acoustical loading in this section of the model is generated by the interfacial
flow u2(x, y; v) and the plate motion w.

The fluid modal response is therefore governed by

(−v2 +v2
fi )qfi =−ivr g

La

0 g
Lb

0

u2ffi dy dx− rv2 g
(La + a)/2

(La − a)/2 g
(Lb + b)/2

(Lb − b)/2

wffi dy dx.

(11)

3.3.   

To complete the system model, an expression for the interfacial fluid velocity
u2 in equation (11) must be determined from a model of the absorbent sub-system.
In the equivalent fluid model, it is assumed that the absorbent may be completely
characterized by its characteristic impedance Za and its porosity Ga , and when
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harmonically excited it then assumes an equivalent sound speed and density given
by

ca =iv/Ga , ra =ZaGa /iv. (12, 13)

The acoustic pressure within the porous medium pa (x, y, z; v) can then be
assumed to obey the equivalent Helmholtz equation

92pa +(v2/c2
a )pa =0. (14)

In order to satisfy the various boundary conditions it is convenient to separate the
x, y and z variables according to

pa =F(x, y; v)G(z; v), (15)

which yields the equations

12G/1z2 + l2
aG=0, 92F+(v2/c2

a − l2
a )F=0. (16, 17)

Equation (17), together with its boundary conditions, is satisfied and pressure
compatibility at interface 2 is assured by the solution

pa (d)= s
nf

i=1

qfiffiGi (d), Gi (d)=1, (18, 19)

l2
ai =v2/c2

a −m2
i p

2/L2
a − n2

i p
2/L2

b , (20)

where d is the absorbent thickness in the z direction. A solution of equation (16)
which obeys (19) is

Gi =[(1−Ai sin lid)/cos lid] cos liz+Ai sin liz, (21)

where Ai is a constant which is determined by the boundary condition on the upper
surface of the absorbent. This constant is fixed by developing an expression for
the interfacial fluid velocity u1 from equation (15),

u1 = (1/ivra )F 1G(0)/1z. (22)

Expressing this in terms of an impedance,

u1 = (1/ivra ){[1G(0)/1z]/G(0)}pa (x, y, 0; v), (23)

allows a comparison to be made with the impedance of an infinite duct to a
propagating wave having a cross-sectional sound pressure distribution given by
ffi . This impedance is given by

Z2i = rv/li , (24)

where

li =zv2/c2 −m2
i p

2/L2
a − n2

i p
2/L2

b . (25)

Hence

rv/li =−(1/ivra )Ailai cos lai /(1−Ai sin lai ), (26)
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which gives a solution for Gi as

Gi =
sin laiz−i(rlai /rali ) cos laiz
sin laid−i(rlai /rali ) cos laid

. (27)

Finally, from equations (22) and (18) one arrives at an expression for u2,

u2 = s
nf

i=1

lai

ivra $cos laid+i(rlai /rali ) sin laid
sin laid−i(rlai /rali ) cos laid%ffiqfi . (28)

3.4.    

When expression (8) for pf is substituted into equation (7), one may write

(−v2I+ivD+V2
s )qs +STqf = f, (29)

where the coupling matrix S is given by

S=g
(La + a)/2

(La − a)/2 g
(Lb + b)/2

(Lb − b)/2

FT
f Fs dy dx (30)

and the diagonal structural damping and stiffness matrices are given by

Dii =2zivsi and V2
sii =v2

si . (31, 32)

The forcing vector f is given by

f= fFT
s (xl , yl ). (33)

Similarly, the fluid model in equation (11), with an additional substitution for
u2 according to equation (28), may be expressed as

−rv2Sqs +(−v2I+ivR+V2
f )qf = 0, (34)

where the fluid damping caused by the absorbent is modelled by the R matrix as

Rij =g
La

0 g
Lb

0

Re 6 rlaj

ivra $cos lajd+i(rlaj /ralj ) sin lajd
sin lajd−i(rlaj /ralj ) cos lajd%7ffjffi dy dx. (35)

Because of the orthogonality of the fluid mode shapes over the integration interval
in (35), R is diagonal with entries given by

Rii =Re 6 c2rlai

Hivra $cos laid+irlai /rali sin laid
sin laid−irlai /rali cos laid%7. (36)

Relationship (28) will also give rise to an imaginary component, which can be
considered as a fluid stiffness. Hence,

V2
fii =v2

fi −
1
v

Im 6 c2rlai

Hivra $cos laid+i(rlai /rali ) sin laid
sin laid−i(rlai /rali ) cos laid%7. (37)
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Figure 4. A monopole located in the air space between a rigid plane and an absorbent.

Equations (29) and (34) may now be solved directly for qs and hence a frequency
response function at a chosen response point (xr , yr ), according to

J(xr , yr , xl , yl ; v)=Fs (xr , yr )qs /f. (38)

The equivalent modal damping and natural frequencies may now be derived from
the frequency response J(v) by using a curve fitting procedure such as that
described at Xu [7]. Although it is conceivable that these parameters could also
be found by examining the eigenvalues of a homogenous system of equations
formed from equations (29) and (34), the curve fitting approach facilitates a more
direct comparison with supporting experiments.

4. A RADIATION MODEL FOR PLATE DAMPING

Here, an alternative model is described for the radiation damping of a simply
supported, baffled plate that is separated from a semi-infinite layer of dissipative,
porous acoustic medium (represented as an equivalent fluid), by a layer of the fluid
contained in the pores of the medium. The other side of the plate radiates into
a semi-infinite region of the same fluid. The method of calculation of the sound
power dissipated per unit volume in the absorbent is also outlined, in the case
where there is no air space between the panel and the absorbent. The assumption
of infinite lateral dimensions for the absorbent and air gap is implicit in the
radiation model chosen here; to impose finite lateral dimensions with prescribed
boundary conditions would complicate the analysis considerably. However, this
feature helps to differentiate the present analysis from the modal formulation of
section 3, thereby facilitating comparisons between two fundamentally different
models (see sections 5 and 6).

4.1.       ,    

Consider an acoustic monopole S, of volume strength S0, located a distance h
above a rigid plane, in the space (medium 1, fluid density r and sound speed c)
between the plane and a semi-infinite layer of absorbing material (medium 2,
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effective density ra and sound speed ca ; see Figure 4). One may express the sound
field in region 1 as

p(r, z; t)= (ivrS0/4p) exp(ivt)P1(r, z) (39)

and take the formulation of Ewing et al. [8] (see also the paper by Amédin et al.
[9]), with acoustic pressure as the scalar field variable, to give

P1(r, z)=g
a

0

k

n1
J0(kr) e−n1=z− h= dk+g

a

0

Q11(k)J0(kr) e−n1(z− h) dk

+g
a

0

Q12(k)J0(kr) en1(z− h) dk (40a)

and

P2(r, z)=g
a

0

Q2(k)J0(kr) e−n2(z− h) dk, (40b)

where P2(r, z) is the spatial factor in region 2. The Q functions are determined
from the boundary conditions and n1 =zk2 − k2, n2 =zk2 − k2

a , ka being the
complex, effective wavenumber in medium 2. Application of the rigid-wall
boundary condition at z=0 and continuity of sound pressure and particle velocity
at z=H yields expressions for the Q functions, and hence an integral expression
for P1(r, 0), the spatial factor for the sound pressure at the plate surface with h=0.
The integrand is singular at k= k, but this singularity may be removed by
transforming the variable of integration from k to n1; the integration path is then
along the imaginary axis from ik to 0, then along the real axis to a. A further
transformation leads to the following result (a being a real variable):

P1(r, 0)=2 g
k

0

zk2 − k2
a − a2 sin aH+ da cos aH

zk2 − k2
a − a2 cos aH− da sin aH

J0(rzk2 − a2) da

+2 g
a

0

zk2 − k2
a + a2 sinh aH+ da cosh aH

zk2 − k2
a + a2 cosh aH+ da sinh aH

J0(rzk2 + a2) da, (41)

d being the complex ratio of the effective fluid density in the porous medium to
the real fluid density. The first integral can be evaluated numerically without too
much difficulty by the use of Gauss–Legendre quadrature (with an appropriate
number of sub-intervals), but the second is less easy, since it converges slowly and
is infinite. In this case, Gauss–Legendre quadrature was again employed, with
adjustable sub-intervals. To obtain reasonable accuracy, 12-point quadrature was
used, with 1000 sub-intervals.
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4.2.          

It is customary to find the sound power radiated by a vibrating structure from
the acoustic far field, but this cannot be done in the present case because sound
power flow is not conserved between the plate surface and the far field. A different
strategy must therefore be adopted. The sound pressure at point O(x, y) on the
surface of the plate (see Figure 5), radiated by a source element at S(xs , ys ) is

dp(x, y=xs , ys ; t)=0ivr

4p 1 eivt W� 0dxsdys sin 0mpxs

a 1 sin 0npys

b 1P1(r, 0), (42)

where

r=[(x− xs )2 + (y− ys )2]1/2 (43)

and W� 0 is the amplitude of the vibrational velocity ẇ of the plate. The total sound
pressure at O(x, y), from the entire plate, is therefore

p(x, y; t)=Sdp(x, y=xs , ys ; t)

=
ivr eivtW� 0

4p g
b

0 g
a

0

sin 0mpxs

a 1 sin 0npys

b 1P1(r, 0) dxs dys . (44)

The normal component of the radiated acoustic intensity Iz (x, y) at the surface
of the plate is given by

Iz (x, y)=Re [p(x, y; t) Re [ẇ(x, y; t)]

=−
vrW� 2

0

8p
sin 0mpx

a 1 sin 0npy
b 1 g

b

0 g
a

0

sin 0mpxs

a 1 sin 0npys

b 1
×Im [P1(r, 0)] dxs dys , (45)

and integrating this over the plate area yields the total radiated sound power,

Figure 5. Geometry of the plate.
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Wrad =−
vrW� 2

0

8p g
b

0 g
a

0

sin 0mpx
a 1 sin 0npy

b 1 g
b

0 g
a

0

sin 0mpxs

a 1 sin 0npys

b 1
×Im [P1(r, 0)] dxs dys dx dy. (46)

This integration apparently cannot be carried out analytically, and so
Gauss–Legendre quadrature was employed, piecewise over each ‘‘phase cell’’ of
the plate vibration pattern. In order to avoid singularities in the computation at
points where x= xs and y= ys , six-point quadrature was used for the inner two
integrals and five-point quadrature for the outer two. The sound power radiated
from one side of the plate can be found from equation (46). The computation was
carried out twice, once for the plate radiating into the absorbent and once for
radiation into air (i.e., from the reverse side of the plate), and the two sound power
values were added together to yield the total radiated power from both sides of
the plate. The figures obtained for the plate radiating into air were compared to
data published by Wallace [10], and very close correspondence was noted.

4.3.       

It may readily be shown from elementary considerations that the effective loss
factor h for the (m, n) mode of a plate simply supported along all its edges is
related to Wrad by the expression

h=1·273Wrad /fmnMpW� 2
0 , (47)

where fmn is the undamped modal natural frequency. The theoretical undamped
plate frequencies were used in carrying out the computations based on the
radiation model. Equation (47) gives predictions that are consistent with those
derived from the experimental data by the use of the modal analysis method [7],
albeit at slightly different frequencies for a given plate mode, depending on the
degree of damping. These small frequency differences are of little consequence in
the present context.

4.4.         

The sound pressure dissipated per unit volume in the absorbent may be found
from the sound pressure field as follows. The acoustic intensity vector may be
expressed as

I(x, y)=Re [p(x, y; t)] Re [v(x, y; t)], (48)

where v is the particle velocity vector. In a steady state, in a dissipative medium,
the balance of acoustic energy requires that

wdiss +9 · I=0, (49)

where wdiss is the time averaged rate of dissipation of acoustic energy per unit
volume in the medium. For sinusoidal time variation, equation (48) may also be
expressed

I= 1
2 Re (P*V), (50)



      157

where P and V are the amplitudes of sound pressure and particle velocity,
respectively. From the linearized Euler equation

V=−9P/ivra , (51)

and so equation (49) yields

wdiss =−(1/2v) Re [i(P*92P+9P · 9P*)/ra ]. (52)

From the Helmholtz equation for the porous medium,

92P=−k2
aP (53)

and one can show that

wdiss =−{rai9P · 9P*− [rai (k2
ar − k2

ai )−2rarkarkai ]=P=2}/2v=ra =2, (54)

where ra = rar +irai and ka = kar +ikai . From equation (54), one can readily find
wdiss from the sound pressure field.

For the sake of simplicity, the sound pressure field was determined in the
absence of an air space; the results would also be valid for a very small air space.
The sound field was determined from the radiation model by integrating the plate
velocity over the surface of the plate as in equation (44), with the spatial factor
P1(r, 0) replaced by 2(ra /r) exp(−ikaR)/R, R being the distance from the point
(xs , ys ) on the plate to the field point, equal to [(x− x2

s )2 + (y− y2
s )2 + z2]1/2. In this

case 12-point Gauss–Legendre quadrature was employed, over each phase cell on
the plate, so that the gradients of P and P* in equation (54) could be found to
the required accuracy by the use of a finite-difference approximation.

5. RESULTS

A selection of experimental mobility functions is shown in Figure 6. As the
porous material is introduced and moved closer to the plate, two phenomena may
be observed: the modal frequency drops, because of the effective additional
attached mass of the air in the foam and air gap, and the damping increases as
a result of increased acoustic radiation.

The measured mode shapes for the five lowest plate modes, with the plate
radiating into air on both sides (see section 2.2), are shown in Figure 7. These
correspond well to the theoretical mode shapes. The mobility peak at about 132 Hz
in Figure 6 appears to be ‘‘spurious’’ in that it does not correspond to one of the
normal modes for a simply supported plate, but may well be associated with the
excitation system; it is not shown in Figure 7.

Predicted and measured values of the plate radiation loss factor h—for the test
plate—versus air gap width H are shown in Figure 8(a), for the (1, 1) mode, with
an undamped natural frequency of 51·7 Hz, and the (2, 1) mode, with a frequency
of 87·3 Hz. Numerical predictions from both the modal formulation and the
radiation model are shown. It may be noted that the latter model predicts a
constant value of h for H:0, a broad maximum in h at H1 1·5 mm and a
monotonic decrease in h as H:a (h actually tends asymptotically to the air
radiation value). For the (1, 1) mode, the modal formulation predicts the loss
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Figure 6. Measured mobility spectra for a variety of air gap widths.

factor fairly well (with an overestimate, particularly for Hq 6 mm), whereas the
radiation model forecasts figures which are significantly too high overall. This
might be expected, since the finite absorbent thickness is taken into account in the
modal formulation, but in the radiation model the absorbent is assumed to be
infinitely thick, leading to an overestimate of the acoustic losses. The assumption
of infinite lateral dimensions for the absorbent and air gap—in the radiation
model—doubtless has its effects on the predictions too, though these are thought
likely to be smaller than those associated with the absorbent thickness. In the case
of the (2, 1) mode, the radiation model predicts h to quite good accuracy, but the
modal formulation is in rather poor agreement with experiment, both qualitatively
and quantitatively. The reasons for this are not entirely clear, but may be
associated at least partly with the assumed boundary conditions at the perimeter
of the layer of absorbent and with the (duct) model for radiation from the
absorbent layer. That the radiation model should perform better in this case might
be expected since, at this higher frequency (and with greater propagation losses
in the absorbent), the assumption of an infinite absorbent thickness should be less
restrictive than it is in the case of the (1, 1) mode. In Figure 8(b) the measured
loss factor and that predicted from the radiation model are shown, for the (3, 1)
and (2, 2) modes. Agreement between prediction and measurement is good. Since
the (3, 1) mode is a net volume-displacing mode whereas the (2, 2) mode is not,
its radiation loss factor in air alone is substantially higher (despite its lower natural
frequency), and is shown on the plot. One can see that, for H=0·1 m, the loss
factor of panel plus absorbent is only about twice that of the panel in air alone.



(1,1) mode (2,1) mode

(3,1) mode

(1,2) mode (2,2) mode
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It is of interest to investigate the details of both the acoustic intensity on the
surface of the test plate and the spatial distribution of the sound power dissipation
within the porous absorbent. The intensity is given by equation (45), and the
double integration was carried out numerically by using five-point Gauss–Legen-
dre quadrature piecewise over each phase cell. Contours of the intensity
distribution—computed from the radiation model—over one phase cell of the
(2, 2) mode (one-quarter of the plate), for W� 0 =1 m/s, are shown in Figure 9.
Figure 9(a) shows the results for the plate radiating into air and Figure 9(b) shows
the results for the plate radiating into the absorbent, with H=5 mm. This mode
is, at its natural frequency, a ‘‘corner mode’’ and the intensity distribution in
Figure 9(a) reflects this, being concentrated in the lower left-hand corner of the
phase cell shown; the radiated intensity is appropriately small. By contrast, in
Figure 9(b), it may be seen that the presence of the absorbent transforms the mode
into something equivalent to a ‘‘surface mode’’, not by wavelength matching
effects but by the introduction of local near-field dissipative effects. The radiation
is now concentrated around the centre of the phase cell, indicating a much more
evenly distributed radiation resistance, and the intensity values are now very much
greater.

Figure 7. Mode shapes for the lowest plate modes.
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Figure 8. Measured and predicted loss factors. (a) r, W——W, — – —: measured, radiation
model, modal formulation for the (1, 1) mode; R, ———, – – –: measured, radiation model, modal
formulation for the (2, 1) mode. (b) R, ———: measured, radiation model for the (3, 1) mode; r,
W——W: measured, radiation model for the (2, 2) mode.
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Figure 9. Predicted intensity contours on the plate surface for a phase cell from the (2, 2) mode:
(a) plate radiating into air, (b) plate radiating into absorbent, H=5 mm; contour values are W/m2.

The sound power dissipation, per unit volume, in the absorbent, was found as
described in section 4.4. In Figure 10, contours of wdiss in the absorbent are shown
for the test plate vibrating in the (1, 1) and (1, 2) plate modes, in the yz plane at
x=0·229 m, for H=0. Again, W� 0 =1 m/s. It can be seen from Figure 10(a) that,
for the (1, 1) mode, wdiss falls off by a factor of ten within about 0·2 m and by a
factor of 500 within about 0·5 m. The power dissipation is quite localized near the
plate surface, even allowing for the increasing areas associated with the wdiss

contours farther from the plate. It may be noted that the contours become almost
spherical at 0·5 m from the centre of the plate, consistent with monopole-type
radiation. The contours for the (1, 2) mode, in Figure 10(b), show an even more
localized behaviour for wdiss , although this may be partly caused by increased
propagation losses at this higher modal frequency (171·2 Hz, as opposed to

Figure 10. Sound power dissipation contours (in W/m3) for H=0: (a) the (1, 1) mode, (b) the
(1, 2) mode.
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51·7 Hz). Farther from the plate surface, the wdiss contours are characteristic of
dipole radiation. Note that the typical ‘‘figure of eight’’ radiation pattern
associated with the pressure far field of a dipole is not evident here, since—normal
to the axis—there is still power dissipation via the (non-zero) velocity field, even
though the sound pressure is zero.

It is of interest to see how the loss factor depends on the flow resistivity of the
absorbent, as well as other parameters such as the width of the air gap. Some
sample computed results—based on both damping models—are presented in
Figures 11(a–d), for basalt wool, which is a commonly used sound-absorbing
material. The range of s is 1000–32 000 mks rayl/m in Figure 11(a) and
1000–128 000 mks rayl/m in Figures 11(b–d). In the case of the (1, 1) mode,
predicted results from the coupled modal formulation are shown in Figure 11(a).
For sq 32 000 mks rayl/m, it was not possible to obtain meaningful predictions
because the peaks in J(v) (see equation (38)) were insufficiently well defined. It
is observed that high degrees of damping can evidently be achieved for air spaces
of 3 mm or less. For example, with an air gap of 2 mm and a flow resistivity of
32 000 mks rayl/m, a loss factor of about 1·4 is predicted. We can see that, for
larger air gaps, the beneficial effect of high flow resistivity deteriorates as H
increases. Computations for the loss factor of the (1, 1) mode based on the
radiation model—and not shown here—indicate a progressive increase in h as s

increases, even for realistic air gaps. For example, for H=1 mm and
s=128 000 mks rayl/m, a loss factor of four is forecast. It should be noted that,
in the case of high flow resistivities (e.g., 128 000 mks rayl/m), frame motion in the
absorbent could be significant in practice, causing small departures from the
predicted damping.

Loss factor data for the (3, 1) mode, predicted from the radiation model, are
shown in Figure 11(b). While the peak loss factor for s=32 000 mks rayl/m is
considerably lower here than it is for the (1, 1) mode, it is still about 0·6 for an
air space of 0·4–0·8 mm, though it rapidly falls as H increases. For
s=128 000 mks rayl/m, h approaches 2 for very small air gaps. One can note that
the loss factor for the higher flow resistivities actually falls below the curves for
the lower flow resistivities as H increases beyond about 1 mm. It is likely that this
effect occurs because the acoustic air flow partly by-passes the absorbent for large
s, and tends to ‘‘leak’’ across the air space between phase cells of opposite sign.
Undulations in the loss factor curves—which were barely perceptible in the plots
in Figure 11(a)—are now quite striking for H greater than about 10 mm. It is
possible that the proposed leakage effect along the air gap might also be
responsible for the fact that the loss factor curves in Figure 11(a), for large
values of flow resistivity, approach one another for H greater than about
10 mm.

The loss factor for the (1, 2) and (2, 2) modes—again predicted by the radiation
model—is shown in Figures 11(c, d). In the case of the (1, 2) mode (a
volume-cancelling mode), the loss factor is generally lower than it is for the (3, 1)
mode (a net volume-displacing mode), even though the frequency is higher. The
loss factor figures for the (2, 2) mode are broadly similar to, though a little lower
than, those for the (1, 2) mode.
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Figure 11. (a), (b) Caption overleaf.
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Figure 11. Predicted loss factor for the test plate with basalt wool absorbent, for a range of flow
resistivities of the absorbent: (a) (1, 1) mode, (b) (3, 1) mode, (c) (1, 2) mode, (d) (2, 2) mode.
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6. DISCUSSION AND CONCLUSIONS

The experimental data presented in this paper show that there is a dramatic
increase in the damping of a flat plate brought about by the proximity of a porous
sound absorbent. Very high levels of damping can be attained by this means,
without the need for structural contact between the absorbent and the plate. The
damping is quite strongly dependent on the mode of vibration of the plate, as
would be expected.

The coupled modal formulation gives fairly good damping predictions for the
(1, 1) mode but is less accurate for the higher modes, and the radiation model
predicts the higher mode damping well but is inaccurate for the (1, 1) mode. The
use of these two models in combination can therefore yield quite accurate
predictions over the entire range of plate modes of interest.

Each of the two analytical models that have been described, for the prediction
of damping, has its own virtues and drawbacks. The coupled modal analysis has
the advantage of incorporating the effects a finite absorbent thickness and of
taking into account the finite baffle dimensions. Its principal flaw relates to the
assumption of a pressure release boundary condition at the edges of the absorbent
layer and air gap, and at the walls of the duct into which sound emanating from
the side of the absorbent layer remote from the plate is assumed to radiate. For
the lowest few plate modes, the duct would present a purely reactive impedance
to this radiation. Nonetheless, the numerical predictions of damping obtained
from this model are in quite good agreement with measured data for the (1, 1)
mode and in fair agreement for the (2, 1) mode. The radiation model does not,
at present, include the effects of a finite absorbent thickness. This feature causes
significant prediction error in the case of the (1, 1) plate mode, but is of minor
consequence for the higher modes. The neglect of finite baffle dimensions in this
model does not appear to be of great importance, at least in the case studied. The
distribution of sound power dissipation per unit volume within the absorbent can
be predicted by the use of this model, as can the intensity distribution over the
plate surface.

The radiation model is capable of being extended to include the effects of a finite
absorbent thickness, without excessive additional complication (the main extra
effort appears to be in the evaluation of the Q functions—see equations
(40a, b)—which becomes rather more tedious), and would be expected to yield a
more accurate prediction of radiation from the (1, 1) plate mode. The coupled
modal formulation has the potential for further refinement, though any very
extensive modifications might detract from its present value as a computationally
rapid tool that is suited for design optimization. More detailed analysis would
probably be better done by the use of finite element techniques.

In both the theoretical models described here and in the experimental
determination of its bulk properties, the absorbent was assumed to behave as an
equivalent fluid with a rigid solid frame. While this assumption is usually well
justified for absorbents of relatively low flow resistivity, it may not represent such
a good approximation for very high values of s. The scope of the present
investigation did not permit a determination of the range of values of s in which
the equivalent fluid formulation is valid, for different materials. A separate study
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would be required to provide such data, but to neglect frame motion seems a
reasonable assumption for the great majority of common sound absorbing media.

The results presented here have relevance not only to structural damping in
general, but also to damping mechanisms in the double-wall structure of an
aircraft fuselage and to lightweight building partitions with absorbent in the air
space, even though the physical system investigated here is considerably simpler.
The near-field effect of the absorbent on the panel damping and the role of the
air space between panel and absorbent are factors which will also play their parts
in the vibrational interaction between each of the two leaves of a double wall and
the absorbent placed between them. Of course, the lateral boundary conditions in
a real double wall structure would normally be different from the pressure release
condition assumed in the modal formulation and could introduce different effects.
Rigid—rather than pressure release—boundaries might increase the damping
further by causing a greater acoustic volume flow through the absorbent, for
example. And in this case, the separation between plate and absorbent could be
of lesser significance than that in the system examined here. At all events, the
idealized physical system investigated here bridges the gap between the vibration
of a simple panel and that of a full double-wall structure. It could also—if
desired—be used to investigate the usefulness of a point-reacting representation
of the absorbent, as opposed to the present bulk-reacting model, in a coupled
modal analysis of a more complex system.
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